Optimization for machine learning

Saved in:
Other Authors: Sra, Suvrit, 1976-, Nowozin, Sebastian, 1980-, Wright, Stephen J., 1960-
Format: EBOOK
Language:English
Published: Cambridge, Mass. : MIT Press, c2012.
Series:Neural information processing series.
Subjects:
Online Access:Go to eBook
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03596cam a2200469Ia 4500
001 u748092
003 SIRSI
005 20130508163018.0
006 m o d
007 cr cnu---unuuu
008 111024s2012 maua ob 000 0 eng d
010 |a  2011002059 
035 |a (Sirsi) o758384972 
040 |a N$T  |c N$T  |d YDXCP  |d E7B  |d COO  |d CDX  |d COD  |d OCLCQ  |d DEBSZ  |d OCLCQ 
020 |a 9780262298773 (electronic bk.) 
020 |a 0262298775 (electronic bk.) 
020 |z 9780262016469 
020 |z 026201646X 
024 8 |a 9786613302847 
035 |a (OCoLC)758384972  |z (OCoLC)766417417 
037 |a 330284  |b MIL 
050 4 |a Q325.5  |b .O65 2012eb 
049 |a TWCM 
245 0 0 |a Optimization for machine learning  |h [electronic resource] /  |c edited by Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. 
260 |a Cambridge, Mass. :  |b MIT Press,  |c c2012. 
300 |a 1 online resource (ix, 494 p.) :  |b ill. 
490 1 |a Neural information processing series 
504 |a Includes bibliographical references. 
505 0 |a Introduction : Optimization and machine learning / S. Sra, S. Nowozin, and S.J. Wright -- Convex optimization with sparsity-inducing norms / F. Bach, R. Jenatton, J. Mairal, and G. Obozinski -- Interior-point methods for large-scale cone programming / M. Andersen, J. Dahl, Z. Liu, and L. Vanderberghe -- Incremental gradient, subgradient, and proximal methods for convex optimization : a survey / D. P. Bertsekas -- First-order methods for nonsmooth convex large-scale optimization, I : general purpose methods / A. Juditsky and A. Nemirovski -- First-order methods for nonsmooth convex large-scale optimization, II : utilizing problem's structure / A. Juditsky and A. Nemirovski -- Cutting-plane methods in machine learning / V. Franc, S. Sonnenburg, and T. Werner -- Introduction to dual decomposition for inference / D. Sontag, A. Globerson, and T. Jaakkola -- Augmented Lagrangian methods for learning, selecting, and combining features / R. Tomioka, T. Suzuki, and M. Sugiyama -- The convex optimization approach to regret minimization / E. Hazan -- Projected Newton-type methods in machine learning / M. Schmidt, D. Kim, and S. Sra -- Interior-point methods in machine learning / J. Gondzio -- The tradeoffs of large-scale learning / L. Bottou and O. Bousquet -- Robust optimization in machine learning / C. Caramanis, S. Mannor, and H. Xu -- Improving first and second-order methods by modeling uncertainty / N. Le Roux, Y. Bengio, and A. Fitzgibbon -- Bandit view on noisy optimization / J.-Y. Audibert, S. Bubeck, and R. Munos -- Optimization methods for sparse inverse covariance selection / K. Scheinberg and S. Ma -- A pathwise algorithm for covariance selection / V. Krishnamurthy, S. D. Ahipasaoglu, and A. d'Aspremont. 
588 |a Description based on print version record. 
650 0 |a Machine learning  |x Mathematical models. 
650 0 |a Mathematical optimization. 
655 0 |a Electronic books. 
700 1 |a Sra, Suvrit,  |d 1976- 
700 1 |a Nowozin, Sebastian,  |d 1980- 
700 1 |a Wright, Stephen J.,  |d 1960- 
776 0 8 |i Print version:  |t Optimization for machine learning.  |d Cambridge, Mass. : MIT Press, c2012  |z 9780262016469  |w (DLC) 2011002059  |w (OCoLC)701493361 
830 0 |a Neural information processing series. 
856 4 0 |z Go to eBook   |u https://ejwl.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=399078 
994 |a 92  |b TWC 
596 |a 1 
999 |a Q325.5 .O65 2012 eb  |w LC  |c 1  |i EB758384972  |l ONLINE  |m EJWL  |r Y  |s Y  |t ONLINE  |u 7/11/2013  |x EBOOK  |0 EBSCOACAD